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Abstract

Necking or cold drawing is a smoothed jump in cross-sectional area of long and thin bars (filaments or films)

propagating with a constant speed. The necks in polymers, first observed about seventy years ago, are now commonly

used in modern processing of polymer films and fibers. Yet till recently there was a lack in fundamental understanding

of necking mechanism(s). For semi-crystalline polymers with co-existing amorphous and crystalline phases, recent

experiments revealed that such a mechanism is related to unfolding crystalline blocks. Using this idea, this paper de-

velops a theoretical model and includes it in a general continuum framework. Additionally, the paper explains the

‘‘forced’’ (reversible) elasticity observed in slowly propagating polymeric necks, and also briefly analyses the viscoelastic

effects and dissipative heat generation when polymer necks propagate fast enough.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The necking phenomena usually occur when a homogeneous solid polymeric bar (film or filament), with

a non-monotonous dependence of axial force S on stretching ratio k, is stretched uniaxially in the region of

SðkÞ non-monotony. In this case the polymer bar is not deformed homogeneously. Instead, two almost

uniform sections occur in the sample: one being nearly equal to its initial thickness and another being

considerably thinner in the cross-sectional dimensions. These sections are jointed by a relatively short

transition (necking) zone that propagates with a constant speed along the bar as a stepwise wave in the

direction of the bar�s thick end (Fig. 1).
The following fundamental questions should be answered by any theory attempting to quantitatively

explain the necking phenomena in physical terms.

i(i) What is the stabilization mechanism that keeps constant the speed of neck propagation?

(ii) What is the physical reason for the S � k non-monotony?
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(iii) What is the physical mechanism of the forced elasticity?

(iv) How the viscoelasticity and dissipative heat generation do affect polymer necking?

Carothers and Hill (1963) were first who discovered the necking phenomena. They observed the necks
propagating in filaments of semi-crystalline (SC) polyester near the room temperature. Whitney and An-

drews (1967), Crissman and Zapas (1974), Zapas and Crissman (1974) found later that under certain

conditions necking could also occur in glassy polymers. Kozlov et al. (1959) studied the temperature effect

on necking for the SC polymers and Bartenev (1964) did that for glassy polymers. Some additional data

were reviewed in monographs by Kargin and Slonimsky (1967), Gul� and Kulizniov (1972) and Tager

(1978). Many of these publications showed that the high stretching ratios achieved usually in cold drawing

were in many cases almost reversible in nature, and some specimens after heating to a solid-state tem-

perature completely recovered their initial form and dimensions (e.g. see Lazurkin and Fogel�son, 1951;
Lazurkin, 1958, and more recently Gent and Jeong, 1986; Gent and Madan, 1989). Lazurkin and Fogel�son
(1951) and Lazurkin (1958) called this effect as forced elasticity.

Orowan (1949) and Nadai (1950) proposed a formal, mechanistic explanation of cold drawing in terms

of the SðkÞ dependence obtained for homogeneous elongation. A detailed discussion of this viewpoint can

be found in the text by Ward (1982) (Chapter 11).

Barenblatt (1964) was the first who suggested a theory of polymer necking. In the spirit of the flame

propagation theory, he proposed a quasi-1D approach taking into consideration a special ‘‘stress-diffusion’’

phenomenon that was theoretically necessary in his approach for stabilizing the neck propagation. Baren-
blatt treated the necking as a boundary-value problem for a non-linear second order ODE whose eigen-

value was the speed of the neck propagation. However, his principal assumption of the stress-diffusion did

find no experimental basis.

A distinct mechanism explaining the SðkÞ non-monotony due to a local adiabatic heating was qualita-

tively proposed by Muller (1949) and later by Marshall and Thompson (1954). Barenblatt et al. (1969)

developed a related 1D theory in which the mathematical problem was treated similarly to Barenblatt

(1964), but with the stabilizing, longitudinal heat conductive term. Further studies of cold drawing by

Brauer and Muller (1954), Vincent (1960) and Allison and Ward (1967) demonstrated, however, that at low
rates of extension common for technological applications, the adiabatic increase in temperature is too small

to explain the necking. Lazurkin (1958) was the first who noticed this fact when performing the experiments

at very low stretching rates.

To describe the cold drawing in terms of non-linear elasticity, Antman (1973, 1974) conceptualized the

importance of non-uniform deformations in necking. In spirit of the approximate theory for long elastic

bars, he analyzed a particular 3D field of strain, neglecting the tangential stresses. Using an averaging

procedure and introducing strain energy functional, Antman reduced the problem to finding minimizers of

the functional and studying the stability and bifurcation conditions. Owen (1987) fulfilled this program
later in a very rigorous way.

Fig. 1. Sketch of necking polymer sample.
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Ericksen (1975) discussed the SðkÞ non-monotony and demonstrated a remarkable similarity between the

necking and phase transition in the van der Waals� gas. Using this analogy, he calculated the constant

equilibrium (‘‘Maxwell’’) force equally (in energetic sense) presenting both the oriented and disoriented

‘‘phases’’.
Coleman (1981, 1984, 1985) and later Coleman and Newman (1988, 1990, 1992a,b) incorporated in the

theory a 1D inhomogeneity in the necking region, which occurs in the cold drawing. Similarly to Antman

(1973, 1974) and Owen (1987), they considered a particular case of 3D finite elastic deformations within an

approximate theory valid for long slender bars. It allowed them to include the terms proportional to the

longitudinal gradient of stretching ratio kz into the formulation of the elastic Gibbs� free energy functional.

Then the equilibrium equations obtained using the standard variational procedure, naturally involved the

stabilizing term kzz.

The Ericksen (1975) theory was extended by Bernstein and Zapas (1981) for the case of viscoelastic solid
bars with the use of the BKZ viscoelastic constitutive relations. It was shown that postulated multiple

valued dependence of viscoelastic force could have a tendency to destabilize the neck propagation. Later

Coleman and Newman (1992a) proposed a general inhomogeneous 1D theory of cold drawing in visco-

elastic solid materials.

Several problems of cold drawing were solved numerically. Needleman (1972) and also Burke and Nix

(1979) analyzed the hypothetical plasticity effects in necking. The numerical solution by Silling (1988) of 2D

elastic necking problem with assumed SðkÞ non-monotony demonstrated the closeness between the Max-

well and calculated actual necking forces.
It should be mentioned that except for the author paper (Leonov, 1990) that analyzed the surface energy

effects as the main cause for necking in nano-size filaments, all the above mentioned theoretical and nu-

merical works have never attempted to describe the physics of the SðkÞ non-monotony, as well as the forced

elasticity effects in polymer necking.

On the other hand, qualitative structural models of necking have been intensively discussed in experi-

mental papers. The most popular such a model proposed by Peterlin and Olf (1966) considered the folded

chain blocks in necking of SC polymers as tilted, sheared, broken off the lamellae and become incorporated

in the (amorphous) microfibrils (Gent and coworkers, 1986, 1989) (see also earlier discussions by Statton
(1967) and also Juska and Harrison (1982a,b)) have recently proposed another model for SC polymers.

They related necking to the mechanism of unfolding chains in crystalline blocks and transferring them into

amorphous phase with consequent orientation. Thus this model explains the necking by mechanical melting

of the folded chain blocks. It also explains the puzzling fact that the higher the degree of crystallinity the

higher is the necking final stretching ratio. Although some easy consequences of this modeling were also

exploited by Gent and coworkers (1986, 1989), the model has not been developed theoretically. Even for

easiest situation of quasi-elastic necking regime, there was no attempt to derive the non-monotonous

constitutive dependence SðkÞ.
It should also be noted that to the author�s knowledge, no physical model, even in qualitative sense, has

been proposed for necking of glassy polymers, except vague mentioning the shear bands caused, perhaps,

by crazing (e.g. see Gent and coworkers, 1986, 1989).

From the above literature survey it is clear that the only item (i) from the list of fundamental problems

for polymer necking has been resolved. Therefore this paper is focused on the resolving remaining problems

(ii)–(iv) from the list. The main objective of this paper is description of the SðkÞ non-monotony. This is

achieved with theoretical developing of the qualitative model proposed by Gent and coworkers (1986,

1989), and incorporating the result into the general mechanical frame established by Ericksen (1975)
Coleman (1981, 1985) and Coleman and Newman (1988, 1990, 1992a,b) for quasi-elastic description of

necking. Another objective is including viscoelastic and heat effects into a simple theoretical scheme.

The structure of the present paper is as follows. The second Section develops the kinetic model of un-

folding the crystalline blocks in SC polymers. The third Section uses this kinetics in formulating the key
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function SðkÞ and discusses the Maxwell stress in the model. The fourth Section analyzes the slow (quasi-

static) neck propagation. The fifth Section briefly considers the forced elastic and irreversible effects. Some

model restrictions and other effects in cold drawing of SC polymers that are not described by the proposed

theory are discussed at the end of the paper.

2. Kinetics of unfolding crystalline blocks in simple elongation of SC polymers

We employ here a simplified model of Gent and coworkers (1986, 1989) for initial structure of SC
polymers as a set of randomly oriented plane crystalline blocks, two ends of which are connected to the

amorphous phase (Fig. 2). The random orientation of crystalline blocks is caused by preliminary crystal-

lization of samples under quiescent conditions. Thus the SC polymer is simplistically modeled as consisted

of amorphous (glassy) parts, ‘‘cross-linked’’ by the crystalline blocks.

Consider now a long axisymmetric bar (a film or rod) of a SC polymer, uniaxially stretched in the

longitudinal direction. Let c0 be the degree of crystallinity in a virgin sample. Let a non-deformed crys-

talline block be consisted of an averaged value n0 monomer linear aggregates (or the monomer units

themselves) united in a folded part of macromolecule as shown in Fig. 2. The secondary interaction between
the monomer units in the crystalline block is described by the periodically located potential wells of the

width h and depth D0, with the periodicity H (Fig. 3). Here D0 is the energy of dissociation of secondary

bonds between monomers in the crystalline block, or the specific heat of fusion. Since the monomer units in

the crystalline blocks are identical, the ‘‘chemical’’ parameters h;H and D0 are assumed not to fluctuate. If

the total longitudinal force S applied to the polymer bar exceeds a certain critical value S� (which is still less

than the averaged ‘‘strength’’ of chemical bonds along the polymer chain), the crystalline blocks began

unfolded and supply the unfolded parts of macromolecules to the amorphous phase. As soon as a part of

the crystalline block is unfolded, it should travel a variable distance lðtÞ of the order of Kuhn segment lk
(the segment AB in Fig. 3), to be incorporated in the local oriented environment in amorphous phase. The

unfolding process is assumed to be slow enough to be viewed as non-dissipative. It means in particular, that

the total strain of the bar during and after necking is reversible.

Fig. 2. Sketch of amorphous crystalline regions in SC polymers. (A–B) indicates the macromolecular segment in transition from

crystalline to amorphous region.
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Consider now approximate kinetics of unfolding crystalline blocks, when S > S�. Let nðtÞ be the aver-

aged value of the unfolded aggregates, so that nð0Þ ¼ 0. Let f ðtÞ be the local fluctuating force acting on the

unfolding chain, and lðtÞ the fluctuating distance from the current unfolding site to a moving point in

amorphous phase, close to the crystalline block (Fig. 3). The energy balance for unfolding process is:

D0 dn=dt ¼ 2hf � dl=dti: ð1Þ
The left-hand side of Eq. (1) presents the rate of dissociation of unfolding crystal and the right-hand side,

the time-space average of the rate of work produced by two unfolding forces f ðtÞ acting at the ending

chains of crystalline block. Because of very high, glass-type viscosity in the amorphous phase near the

block, the possible rotation of the crystalline block is neglected. In order to calculate the right-hand side in
Eq. (1) we use the physically motivated scaling approximations:

hf dl=dti ¼ hfhh�1 dl=dti 	 D0ðlk=hÞhl�1 dl=dti: ð2Þ
Here the scaling relations, fh 
 D0 and lðtÞ 
 lk have been used. We now can evaluate the averaged term in

the right-hand side of Eq. (2) as follows:

hl�1 dl=dti 	 c0ðn0 � nÞhkzi0k
�1 dk=dt: ð3Þ

Here k and k�1 dk=dt � _ee are respectively the macroscopic stretching ratio and stretching rate, and hkzi0 is
the longitudinal, z-axis, component of the unit orientation vector k, characterizing the initially oriented
crystalline blocks. Assuming a uniform distribution of initially oriented crystalline blocks yields:

hkzi0 ¼ 1=2. Substituting this value and also Eqs. (2) and (3) into Eq. (1) divided by the value n0, results in
the kinetic equation for the unfolding process:

�da=dt ¼ mak�1 dk=dt; a � 1� n=n0; m ¼ c0lk=h: ð4Þ
Here aðtÞ is the averaged portion of existing (not destroyed) crystal in the blocks, so cðtÞ ¼ c0aðtÞ is the

actual degree of crystallinity at time t. Integrating Eq. (4) with the natural initial conditions, að0Þ ¼ 1 and

kð0Þ ¼ 1, yields the remarkable simple result:

aðtÞ ¼ k�mðtÞ: ð5Þ

3. Modeling finite elasticity of SC polymers

This Section models macroscopic finite 3D and 1D elongation elastic deformations of SC solid polymers.

For the sake of simplicity, we further assume these polymers to be incompressible. To develop a continuum

approach, which captures essential features of two-phase, crystalline/amorphous, SC polymers, we model
initially the mechanical behavior of each phase, which is completely described by the respective strain

energy function F (the Helmholtz� local thermodynamic potential per mass unit) for 3D deformations.

Fig. 3. Sketch of potential well in a crystalline block.
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As assumed, the initial crystallites in samples of SC polymers are chaotically oriented. Therefore the finite

elasticity in these materials could be considered as inherently isotropic.

The general 3D formulae of incompressible finite isotropic elasticity for the elastic potential W ð¼ qF Þ
and stress tensor r in the Eulerian, Cartesian presentations are of the form (e.g. see Truesdell and Noll,
1992)

W ¼ W ðT ; I1; I2Þ; I1 ¼ trB; I2 ¼ trB�1; I3 ¼ detB ¼ 1; r ¼ �pd þ 2W1B� 2W2B�1: ð6Þ

Here T is the temperature, B is the Finger strain tensor, B�1 is the Cauchy-Green strain tensor, Ik are the

strain invariants, p is the pressure, d is the unit tensor, and Wk ¼ oW =oIk. The formula for stress in (6) is

presented in the Finger form. In the case of simple elongation with the stretching ratio k, the general

formulae due to (6) for strain invariants, the actual elongation stress r and engineering stress S

(¼ r=k ¼ oW =ok) defined as elongation force per initial cross-section, are:

I1 ¼ k2 þ 2k�1; I2 ¼ 2k þ k�2; r ¼ ðW1 þ W2=kÞðk2 � k�1Þ; S ¼ ðW1 þ W2=kÞðk � k�2Þ: ð7Þ
The strain energy function Wc for the crystalline phase is modeled here similarly to finite deformations of

hard polycrystalline materials, such as metals, rocks etc. Macroscopic behavior of these materials can be

considered as intrinsically isotropic, because of random orientation of their crystals. Thus the suitable
dependence of the function Wc can be searched from the class: Wc ¼ WcðT ; I2Þ. We will further use the simple

3D dependencies for the strain energy function Wc, and corresponding extra stress,

Wc ¼ GcðI2 � 3Þ=2; r
c
¼ �GcB�1: ð8Þ

Here Gc is the Hookean modulus for the crystalline phase. Due to Eqs. (7) and (8), the formulae for strain

energy function Wc and force Sc in simple elongation are of the form:

Wc ¼ 1=2Gcð2k þ k�2 � 3Þ; S ¼ Gcð1� k�3Þ: ð9Þ
Eq. (9) shows that with growing k, the force ScðkÞ rapidly reaches the upper constant value Gk. That was the

reason that the potential function (8) has been chosen.

We now model the strain energy function Wa and corresponding extra stress r
a
for the amorphous phase

similarly to that for finite deformations of cross-linked elastomers, taking into account the finite extensi-
bility of macromolecular chains:

Wa ¼ 1=2GaðJ � 3Þ ln J � 3

J � I1

� �
; r

a
¼ Ga

J � 3

J � I1
B; Ga ¼ qRT=M�: ð10Þ

Here J is a constant, whose value (	100) corresponds to the fully extended polymer chain. In the formula

(10) Ga is the Hookean modulus, q is the density, R is the gas constant and M� is averaged molecular weight
of parts of macromolecules between cross-links. The idea of the specific expression (10) for Wa was sug-

gested long ago by Warner (1972), was used later for viscoelastic liquids in the text by Larson (1988), and

recently proposed again by Gent (1996) for cross-linked elastomers. Due to Eqs. (7) and (10), the formulae

for strain energy function Wa and force Sa in simple elongation are of the form:

Wa ¼ 1=2GaðJ � 3Þ ln J � 3

J � k2 � 2k�1

� �
; Sa ¼ Ga

J � 3

J � I1
ðk � k�2Þ: ð11Þ

The strain energy function for 3D deformations of SC solid polymers is now proposed in the form:

W 	 c0aðtÞWcðBÞ þ ½1� c0aðtÞ�W �
a ðBÞ: ð12Þ

Here the lower indices ‘‘c’’ and ‘‘a’’ stand for crystalline and amorphous phases, B is the total Finger strain
in the SC polymer, and the symbols c0 and a have been explained in the previous Section. The contribution

of ‘‘amorphous’’ strain energy function W �
a in the total one W is different from Wa defined in Eq. (11). It
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reflects the fact that only a fraction of macromolecules with the average molecular weight, M�
a ¼

M�½1 � c0aðtÞ�, is involved in the amorphous phase. Therefore using formulae (11) in Eq. (12) with changing

Ga for G�
a 	 qRT=M�

a yields:

W 	 c0aðtÞWcðBÞ þ WaðBÞ: ð13Þ

Here the term Wa is the same as in Eq. (11), with the modulus Ga presented in Eq. (10). Substituting now

Eqs. (6), (9) and (11) into Eq. (13), results in the formulae:

W ¼ 1=2Gcc0ð2k þ k�2 � 3Þ=km þ 1=2GaðJ � 3Þ ln J � 3

J � k2 � 2k�1

� �
; ð14Þ

SðkÞ ¼ oW =ok a¼constj ¼ Gcc0ð1� k�3Þ=km þ Ga

J � 3

J � I1
ðk � k�2Þ: ð15Þ

Eqs. (14) and (15) represent the model of equilibrium (elastic) simple elongation for a SC polymer. It should

be mentioned that these equations are invalid when the initial degree of crystallinity c0 in SC polymers is

either close to the unity or zero (less than gelation point for the cross-links), because in these cases the
formulae of rubber elasticity (10) are not applicable. The plot SðkÞ according to Eq. (15) is sketched in Fig. 4.

4. Elastic necking with non-monotonous dependence SðkÞ

This Section considers the equilibrium uniaxial stretching a long bar in the form of filament or film,

whose dependence SðkÞ is given by Eq. (15). The analysis shows how in the equilibrium elastic case the
present model is incorporated in the general continuum framework established by Ericksen (1975) Coleman

(1981, 1984, 1985) and Coleman and Newman (1988, 1990, 1992a,b).

The conditions for the SðkÞ non-monotony, easily established from Eq. (15) read:

GcmPGcc0 � Ga ðc0 P 0:3;Gcm=Ga P 10Þ: ð16Þ

Here in the first inequality (16) we used the formula for m (m ¼ c0lk=h, with lk > h) in Eq. (4). Under

condition (16) the derivative S0ðkÞ in (15) has two roots, k� and k� (k� < k�), the first, k�, corresponding to
the maximum of SðkÞ, and the second, k�, to the minimum of SðkÞ. Thus in the intervals ð1; k�Þ and ðk > k�Þ,
the function SðkÞ monotonically increases and it monotonically decreases in the interval ðk�; k

�Þ.

Fig. 4. Schematics of Maxwell stress S0.
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For the SC polymers with long-range (‘‘flexible’’) secondary bonds in the crystalline blocks, when

lk 
 H 
 h i.e. m 	 c0, and low degree of crystallinity c0, the value of k� is relatively large (k� 	 2 ), but the

interval ðk�; k
�Þ is very narrow. In this case, one can use the limit J ! 1 (J � I1) in Eq. (15) and use the

classic expression for the extension force known in the rubber elasticity.
In the more realistic case of short-range (‘‘rigid’’) secondary bonds in the crystalline blocks when m > 1,

the value k� is approaching the unity from above, and k� � k�. In this case, the finite extensibility of

polymer chains cannot be ignored.

In order to find the actual constant value of the drawing force S0 during necking, we will first use the

Ericksen (1975) approach, which considers the transition zone in necking as a cross-sectional jump, and

uses for calculations an elastic potential. In the case of SC polymers the true elastic strain energy function in

the sense of Eq. (6) does not generally exist, since the actual degree of crystallinity cannot be generally

represented as a scalar function of strain tensor. However, in the particular case of simple elongation, such
a pseudo-potential function ŴW ðkÞ always exists and is found from the relation dŴW =dk ¼ SðkÞ as

ŴW ðkÞ ¼
Z k

1

SðnÞdn ¼ ŴWcðkÞ þ WaðkÞ; ŴWcðkÞ ¼ Gcc0
1� k�mþ1

m� 1

�
� 1� k�m�2

mþ 2

�
: ð17Þ

Here WaðkÞ is represented in Eq. (11). The Gibbs� (pseudo-) free energy function (per mass unit) ĜG is now

introduced by the common expression:

ĜG ¼ ŴW ðkÞ � S0ðk � 1Þ; ð18Þ
where S0 is the actual force. Then the equilibrium condition, oĜG=ok S0¼const

�� ¼ 0, for any monotonically

increasing branch of SðkÞ, yields in accordance with (17): dŴW =dk ¼ S0. If k1 and k2 ðk1 < k� < k� < k2Þ are
the stretching ratios achieved during necking at the homogeneously deformed ‘‘thick’’ and ‘‘thin’’ ends of

an elongated bar under a constant stretching force Sm, then according to the Gibbs� rule applied to the
elastic bars by Ericksen (1975),

ĜGðk2Þ � ĜGðk1Þ ¼
Z k2

k1

½SðkÞ � Sm�dk ¼ 0: ð19Þ

Here Smð¼ S0Þ is the Maxwell stress. The graph in Fig. 4 illustrates the Gibbs� rule and Eq. (19).

When the values of k1, k2 and Sm are found, the problem of equilibrium necking is practically solved,

because one can use the evident relations,

Ak ¼ A0=kk; ck ¼ c0=k
m
k ðk ¼ 1; 2Þ; V ¼ �Uk1=ðk2 � k1Þ: ð20Þ

Formulae (20) give the values of cross-sectional areas of the bar in initial state, A0, at the thick end, A1, and

at the thin end, A2, as well as the corresponding degrees of crystallinity ck at the both ends and the relation
between the velocity at the thin end U and the neck propagation speed V, when the thick end is at rest.

When analyzing the transient neck phenomena, one needs first to use the mass balance averaged over

cross-section:

otAþ ozðuAÞ ¼ 0: ð21Þ

Here both the velocity u and the cross-section area A depend on time t and the axial space coordinate z.

Additionally, for the slim bars, one can use the 1D kinematical equation valid for pure simple stretching,

k�1 dk=dt 	 k�1ðot þ uozÞk ¼ _ee 	 ozu:

This equation can be represented in the equivalent form,

otðk�1Þ þ ozðuk�1Þ ¼ 0: ð22Þ
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Comparing Eqs. (21) and (22), one can find:

kA ¼ const ¼ A0; ð23Þ

where A0 is the cross-sectional area of bar before deformation, when k ¼ 1. Eq. (23) has the same form of

incompressibility condition as in homogeneous elongation deformation of the bar.
We consider further only quasi-stationary regimes when the entire bar configuration moves in the axial z

direction as a stationary wave. Then passing to the moving frame of reference by the transformation,

z ! x ¼ z� Vt, where V is the propagation speed, one can consider all the phenomena as stationary. In this

case, Eqs. (21) and (22) are reduced to:

Aðu� V Þ ¼ const; k�1ðu� V Þ ¼ const: ð24Þ

According to Coleman and Newman (1988), the approximate governing equation for propagation of elastic

neck in the transition inhomogeneous zone can be presented in the integrable form:

SðkÞ � S0 ¼ 1=2ðdc=dkÞkx þ cðkÞkxx: ð25Þ

Here the lower index ‘‘x’’ denotes the derivative with respect to x variable. The positive function cðkÞ in Eq.
(23) was represented in paper by Coleman and Newman (1988) by derivatives of corresponding 3D elastic

potential with respect to the principal values of the Finger strain tensor B. As shown in papers by Coleman

(1981, 1985) and Coleman and Newman (1988, 1990, 1992a,b), Eq. (25) is valid with the accuracy of

OðbkxÞ4, where b is a characteristic thickness of elastic bar (the diameter of filament or thickness or film).

Eq. (25) asserts the parabolic character of the governing equation for unsteady necking, the term with the

second order space derivative providing the stabilization of neck propagation. An evident variation

treatment of the problem has also been considered in papers by Coleman (1981, 1985) and Coleman and

Newman (1988, 1990, 1992a,b) 2] (see also Leonov (1990)). Multiplying Eq. (25) by kx and integrating it
over x yields the first integral of Eq. (25):

1=2cðkÞk2
x � ĜGðkÞ � 1=2cðkÞk2

x � ŴW ðkÞ þ S0ðk � 1Þ ¼ const: ð26Þ

The left-hand side of Eq. (26) represents the density of ‘‘Hamiltonian’’ for the elastic bar.
As mentioned, the 3D elastic potential (strain energy function) does not generally exist in our model.

Therefore to calculate the function cðkÞ as proposed in papers by Coleman (1981, 1985) and Coleman and

Newman (1988, 1990, 1992a,b) we use the derivatives of the strain energy function (14) at constant degree

of crystallinity. Calculating in this way the function cðkÞ according to paper by Coleman and Newman

(1988) (Eq. (44) there) yields:

cðkÞ ¼ b2

32k2

Gc=k
m

k2 þ k þ 1

�
þ GakðJ � 3Þ
J � k2 � 2k�1

�
: ð27Þ

Eq. (27) holds for uni-axially extended samples during necking for both the elastic filaments and films. The

boundary conditions for necking phenomena described by Eqs. (22) and (26) are:

x ! �1 : u ¼ 0; kx ¼ 0 ðk ¼ const ¼ k1Þ;
x ! þ1 : u ¼ const ¼ U ; kx ¼ 0 ðk ¼ const ¼ k2ð> k1ÞÞ:

ð28Þ

In this treatment, the parameter S0 is considered as an eigenvalue of the boundary problem (25) and (28),

and the parameters k1 and k2 are proved to be found to satisfy the Ericksen condition (19), and therefore

they are unique functions of S0. The asymptotic treatment of the boundary problem as an ‘‘infinite’’ reflects

the exponential decay of the solution at x ! �1. We assume that the thick end of the bar is at rest and the
thin one is extended with a constant speed U. Using the boundary conditions (28) also evidently yields the

formulae (20), where one should additionally employ the incompressibility condition, k ¼ A0=A.
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Substituting this condition into Eq. (22) and using the formula (20) for the speed of neck propagation V,

yields the relation between the local velocity u and stretching ratio k in necking as follows,

uðxÞ ¼ U
kðxÞ � k1

k2 � k1

: ð29Þ

Eq. (29) being based only on continuum kinematics does not depend on the constitutive relations and holds
in both the equilibrium and non-equilibrium cases. It is also evident from Eq. (26) that elastic inhomo-

geneous necking problem has an analytical solution discussed earlier by Coleman (1981, 1984, 1985) and

Coleman and Newman (1988, 1990, 1992a,b).

5. Forced elasticity and non-equilibrium effects in polymer necking

According to the present model, SC polymers can be viewed as a type of cross-linked elastomers, whose

‘‘cross-links’’ are represented by crystalline blocks unfolded during necking process. These specific cross-

links still exist after necking in almost amorphous polymer with oriented parts of macromolecules between

the ‘‘cross-links’’. Therefore one can expect that after a rapid unloading, the stretched sample from a SC

polymer will almost completely recover its initial length. This scenario does not happen, however, mostly

because the amorphous phase in a SC polymer is not in rubbery but rather in glassy state where the

mobility of large polymer chains is suppressed by a low temperature. That is why the samples of SC
polymers, heated after necking to a (rubbery) temperature below the melting point, demonstrate almost

complete recovery (Lazurkin and Fogel�son, 1951; Lazurkin, 1958; Gent and Jeong (1986); Gent and

Madan (1989)). This explanation, however, does not answer another question, why the irreversible, viscous,

effects are not observed in polymer necking at relatively low speed of extension, although the viscosities in

amorphous phase are extremely high? To answer this question we assume (see also Lazurkin and Fogel�son,
1951; Lazurkin, 1958) that at high level stresses, observed in polymer necking, the Eyring�s activation

mechanism (e.g. see Halsey et al. (1945)) essentially decreases the viscosity in amorphous phase to such a

level that dissipative effects and related to them dissipative heat generation are negligible as compared to the
leading elastic effects. As soon as the sample is isothermally released from load, the viscosity in amorphous

phase, due to a relatively low temperature, jumps back to such a high value that the deformation in the

sample could be recovered only in astronomical times.

We now propose a simple viscoelastic model that takes into account both, the elastic and inelastic kinetic

effects. We assume that the longitudinal force stretching a SC polymeric bar consists of sum of elastic and

inelastic constituents, i.e. S ¼ Se þ Si, where during the neck propagation, when S ¼ S0, Se ¼ SðkÞ described
by Eq. (15), and Si is a viscous force,

Si ¼ gðT ; rÞ _ee; gðT ; rÞ ¼ g� exp
E � mr
RT

� �
; r ¼ kS0; _ee ¼ ux: ð30Þ

Here _ee is the stretching rate, and the viscosity gðT ; rÞ is represented in the Eyring (1945) form, where E is the

activation energy, r is the actual stress, T is the temperature, R is the gas constant, and the ‘‘activated’’

volume m and pre-exponential factor g� being considered as constant material parameters. Adding the

elastic and viscous forces with the use of Eqs. (23), (27) and (28) yields:

S0 ¼ SðkÞ � 1=2c0kðkÞkx � cðkÞkxx þ kx½g0ðT Þ=Dk�U expð�mkS0=RT Þ: ð31Þ

g0ðT Þ ¼ g� expðE=RT Þ; Dk ¼ k2 � k1:

For steady neck propagation, the boundary conditions to Eq. (31) are the same as shown in Eq. (28). Here

parameter S0, the actual force acting on polymeric bar during the steady neck propagation, is treated once
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again as the eigenvalue of the boundary problem (28) and (31). Note that the value of Dk is a unique

function of the eigenvalue S0. When the difference in the k derivatives of both ascending branches of SðkÞ is
a monotonous function of k, the function DkðS0Þ is monotonous.

Multiplying Eq. (31) by kx results in:

ð1=2Þ½cðkÞk2
x �x ¼ ½SðkÞ � S0�kx � k2

x ½g0ðT Þ=Dk�U expð�mkS0=RT Þ: ð31aÞ

Therefore on the phase plane, kxðkÞ, Eq. (31a) takes the form:

ð1=2Þ½cðkÞk2
x �
0
k ¼ SðkÞ � S0 � kx½g0ðT Þ=Dk�U expð�mkS0=RT Þ: ð32Þ

Introducing the new functions,

w ¼ kx

ffiffiffiffiffiffiffiffiffi
cðkÞ

p
; aðS0; kÞ ¼

g0U

Dk
ffiffiffiffiffiffiffiffiffi
cðkÞ

p expð�mS0k=RT Þ; ð33Þ

reduces Eq. (32) and corresponding boundary conditions for the case of neck propagation to the form:

dw
dk

¼ SðkÞ � S0 þ waðS0; kÞ
w

ðk1 < k < k2Þ; wðk1Þ ¼ wðk2Þ ¼ 0: ð34Þ

It should be noted that in the most interesting case of small enough viscosity (or large enough S0), function
aðS0; kÞ introduced in Eq. (33) is a decreasing function of k, except, perhaps, a small vicinity of the point k1.

Elementary analysis of phase diagram for Eq. (34) reveals the three singular points, k1; k� and k2

(k1 < k� < k2). The points k1 and k2 where S0ðk1;2Þ > 0 are the saddle points, while the point k� where
S0ðk�Þ < 0, represents either unstable focus when the viscosity is small 4S0ðk�Þ þ a2ðkÞ < 0ð Þ or unstable

knot otherwise. A qualitative picture of the phase trajectories corresponding to the case of necking with

small viscosity (the point k� is unstable focus) is shown in Fig. 5. Here the line S ¼ S0 corresponds to w � 0,

the medium thick solid line shows the plot SðkÞ, the medium thick dashed line depicts the plot w�ðkÞ
corresponding to zero of the numerator in Eq. (34), the thin solid lines represent the trajectories with

boundary conditions different from that in (34), and the thick solid line depicts the solution of the boundary

problem (34). This solution represents a separatrix going out of the saddle point k1 as its unstable mustache

and coming into the saddle point k2 as its stable mustache. The existence and uniqueness of solution for the
non-linear boundary value problem (34) with eigenvalue S0 has also been proved. The key fact here is the

Fig. 5. Phase diagram for Eq. (34).
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proof that the ‘‘length’’ of the positive part of separatrix, which goes from the first saddle point with k ¼ k1

as the unstable moustache, is a monotonically increasing and continuous function of the parameter S0.
Multiplying Eq. (34) by wðkÞ and integrating the result from k1 to k2 with the use of boundary condition

in (34) yields:

wðkÞ ¼ 2

Z k

k1

½SðqÞ
�

� S0�dqþ
Z k

k1

aðS0; qÞwðqÞdq
�1=2

; ð35Þ

Assigning k ¼ k2 results in the integral relation:Z k2

k1

½SðkÞ � S0�dk þ
Z k2

k1

aðS0; kÞwðkÞdk ¼ 0: ð36Þ

Since the functions SðkÞ; aðkÞ and wðkÞ are positive, Eq. (36) shows that with the viscous term, S0 is larger
than the Maxwell stress Sm defined by Eq. (19).

When the viscosity term is so small that it can be treated as a disturbance, the approximate solution is:

wðkÞ 	 2

Z k

k1

½SðqÞ
�

� S0�dqþ
Z k

k1

aðŜS0; qÞŵwðqÞdq
�1=2

; ŵwðkÞ ¼ 2

Z k

k̂k1

½SðqÞ

0
B@ � ŜS0�dq

1
CA

1=2

: ð37Þ

Here the overcap symbolizes the inviscid solution of the problem. The first formula in Eq. (37) has sense if

the function ŵwðkÞ is defined as taking zero value outside the interval ðk̂k1; k̂k2Þ: Parameters k1; k2 and S0 are
uniquely defined as:

S0 	
Z k2

k1

½SðkÞ þ aðS0; kÞŵwðkÞ�dk: ð38Þ

We finally consider the thermal effects that have been observed by Muller (1949) and Marshall and

Thompson (1954) in relatively fast propagating necks. We assume that a noticeable temperature gradient

exists only in the short necking region where kx changes highly, and therefore the adiabatic approach to

heat phenomena is appropriate. In this case, the heat equation is written in the form:

qcp½uðT � T1Þ�x 	 k2
xðU=DkÞ2g0ðT Þ expð�mS0k=RT Þ: ð39Þ

Here T1 is the constant temperature of the bar thick end.

It should be noted that in the heat equation for the rubber-like material where the assumption of en-

tropic elasticity is commonly made, the heat source term is not the dissipation but the mechanical power.

However in our case, when the amorphous phase in SC polymers is in glassy state, the internal energy could
depend not only a temperature but also on strains. Therefore the heat source term in Eq. (39) represents the

dissipation in the system.

Adding Eq. (39) multiplied by Dk=U to Eq. (31a) results in:

1=2½cðkÞk2
x �x þ ðqcpDk=UÞ½uðT � T1Þ�x ¼ ½SðkÞ � S0�kx:

Integrating this equation with the use of boundary conditions (28) over the entire necking region,

�1 < x < 1, yields:

qcpDT ¼
Z k2

k1

½SðkÞ � S0�dk=Dk: ðDT ¼ T2 � T1Þ: ð40Þ

Here the common simplifying assumption has been made that qcp 	 const. Eq. (40) has the evident physical

sense: the total temperature increase in the necking is proportional to the deviation of total change of the
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Gibbs� potential (18) from its equilibrium (pure elastic) value. Eq. (40) also shows that this temperature

change is proportional to the total dissipation in the propagating neck.

6. Concluding remarks

The theoretical approach developed in this paper for SC polymers attempted to answer several ques-

tions, which remained unanswered during the years.

ii(i) It was demonstrated that a simple model of unfolding polymer crystals results in non-monotonous be-

havior of the dependence of stretching force on the stretching ratio, which has been demonstrated as a

formal reason for occurrence of necking in many previous papers.

i(ii) A simple approach was also developed for modeling viscoelastic, dissipative phenomena in necking

which at least qualitatively described the mechanism of forced elasticity.

(iii) Both the above models were included in the well-elaborated general continuum formalism.

Yet at least two important necking problems remain unresolved. The first one is related to observed

occurrence of two consecutive necks in some SC polymers. This usually happens when the SC polymer has

a spherulite structure. Then dismantling the spherulites and converting them in the set of slightly oriented

crystalline blocks and amorphous phase would be consider as the reason for occurrence of the first necking

(e.g. see Peterlin and Olf, 1966; Statton, 1967). Then the second necking will follow the mechanism of

unfolding the crystalline blocks developed in this paper. The second problem is related to unknown

mechanism of very small amplitude striations occurred at the thin end of sample, right behind the neck

region (see Fig. 3 in paper by Gent and Madan (1989)).

Acknowledgement

The author is grateful to Dr. M. Cakmak for fruitful discussions.

References

Allison, S.W., Ward, I.M., 1967. Cold drawing of poly(ethylene terephthalate). Br. J. Appl. Phys. 18, 1151–1164.

Antman, S.S., 1973. Non-uniqueness of equilibrium states for bars in tension. J. Math. Anal. 44, 333–349.

Antman, S.S., 1974. Qualitative Theory of Ordinary Differential Equations of Non-Linear Elasticity. In: Nemat-Vasser, S. Pergamon,

New York, pp. 58–101.

Barenblatt, G.I., 1964. On the neck propagation under tension of polymeric samples. Appl. Math. Mech. (Russian) 28 (6), 1048–1060.

Barenblatt, G.I., Entov, V.M., Segalov, A.E., 1969. On thermal mechanism of cold drawing of polymers, Proc. IUTAM Symp. on

Thermoelasticity, East Kilbrite, 1968, Springer, Vienna.

Bartenev, G.M., 1964. Determination of the activation energy of polymeric viscous flow from experimental data. Vysokomolekul.

Soedin. 6 (2), 335–340.

Bernstein, B., Zapas, L.J., 1981. Stability and cold drawing of viscoelastic bars. J. Rheol. 25, 83–94.

Brauer, P., Muller, F.H., 1954. Temperature elevation in the zone of flow during cold drawing [of polymers]. Koll. Z. 135, 65–67.

Burke, M.A., Nix, W.D., 1979. A numerical study of necking in the plane tension test. Int. J. Solids Struct. 15, 379–393.

Carothers, W.H., Hill, J.W., 1963. Polymerization and ring formation XV. Artificial fibers from synthetic linear condensation

superpolymers. J. Am. Chem. Soc. 54, 579–1587.

Coleman, B.D., 1981. Necking and drawing in polymeric fibers under tension. Archive of Rational Mechanics and Analysis. 83, 115–

137.

Coleman, B.D., 1984. A Phenomenological theory of the mechanics of cold drawing. In: Ericksen, J.L. (Ed.), Orienting Polymers.

Springer, New York, p. 76.

A.I. Leonov / International Journal of Solids and Structures 39 (2002) 5913–5926 5925



Coleman, B.D., 1985. On the cold drawing of polymers. Compt. Math. Appl. 11, 35–65.

Coleman, B.D., Newman, D.C., 1988. On the rheology of cold drawing. I. Elastic materials. J. Polym. Sci. B 26, 1801–1822.

Coleman, B.D., Newman, D.C., 1990. Mechanics of neck formation mechanism for cold drawing of elastic films. Polym. Eng. Sci. 30,

1299–1302.

Coleman, B.D., Newman, D.C., 1992a. Rheology of neck formation in the cold drawing of polymeric fibers. J. Appl. Polym. Sci. 45,

997–1004.

Coleman, B.D., Newman, D.C., 1992b. On the rheology of cold drawing II. Viscoelastic materials. J. Polym. Sci. Part B 30, 25–47.

Crissman, J.M., Zapas, I.J., 1974. Creep failure and fracture of polyethylene in uniaxial extension. Polym. Eng. Sci. 19, 99–103.

Ericksen, J.L., 1975. Equilibrium of bars. J. Elasticity 5, 191–201.

Gent, A.N., Jeong, J., 1986. Plastic deformation of crystalline polymers. Polym. Eng. Sci. 26, 285–289.

Gent, A.N., Madan, S., 1989. Plastic yielding of partially crystalline polymers. J. Polym. Sci. B:Polym Phys. 27, 1529–1542.

Gent, A.N., 1996. A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61.

Gul�,V.Ye, Kuleznyov, V.N., 1972. The Structure and Mechanical Properties of Polymers, second ed., (Russian), High Education,

Moscow.

Halsey, G., White, H.J., Eyring, H., 1945. Mechanical properties of textiles. I. Text. Res. J. 15, 295–311.

Juska, T., Harrison, I.R., 1982a. A proposed plastic deformation mechanism for semicrystalline polymers. Polym. Eng. Rev. 2, 13–28.

Juska, T., Harrison, I.R., 1982b. A criterion for craze formation. Polym. Eng. Sci. 22, 766–776.

Kargin, V.A., Slonimsky, G.L., 1967. Short Course of the Physical Chemistry of Polymers. Khimiya, Moscow.

Kozlov, P.V., Kabanov,V.A., Frolova, A.A., 1959. Certain correlations in the development of uniaxial deformation in crystalline and

vitreous films from poly(ethylene terephthalate). M.V. Lomonosov State University, Moscow, Vysokomolekulyarnye Soedineniya

Vsesoyuz. Khim. Obshchestvo im. D. I. Mendeleeva 1(2), 324-329.

Larson, R.G., 1988. Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston, Section 5.8.3.

Lazurkin, Yu.S., Fogel�son, R.L., 1951. Nature of the large deformations of high-molecular compounds in the vitreous state. Inst.

Phys. Problems, Acad. Sci. U.S.S.R., Moscow, Zhur. Tekh. Fiz. 21, 267–286.

Lazurkin, Yu.S., 1958. Cold-drawing of glass-like and crystalline polymers. J. Polym. Sci. 30, 595–604.

Leonov, A.I., 1990. The effect of surface tension on stretching of very thin highly elastic filaments. J. Rheol. 34, 155–167.

Marshall, I., Thompson, A.B., 1954. The cold drawing of high polymers. Proc. Roy. Soc. London A 221, 541–557.

Muller, F.H., 1949. Problem of cold-drawing of high-polymeric substances. Koll. Z. 114, 59–61.

Nadai, A., 1950. Theory of Flow and Fracture of Solids. McGraw-Hill, New York.

Needleman, A., 1972. A numerical study of necking in circular cylindrical bars. J. Mech. Phys. Solids 20, 111–127.

Orowan, E., 1949. Fracture and strength of solids (metals). Rep. Progr. Phys. 12, 186–232.

Owen, N., 1987. Existence and stability of necking deformations for nonlinearly elastic rods. Arch. Rational Mech. Anal. 98, 357–383.

Peterlin, A., Olf, H.G., 1966. NMR observations of drawn polymers. V. Sorption into drawn and undrawn polyethylene. J. Polym. Sci.

A-2 4, 587–598.

Silling, S.A., 1988. Two-dimensional effects in the necking of elastic bars. J. App. Mech.-Trans. ASME 55, 530–535.

Statton, W.O., 1967. Coherence and deformation of lamellar crystals after annealing. J. Appl. Phys. 38, 4149–4151.

Tager, A.A., 1978. Physical Chemistry of Polymers Mir, Moscow, USSR.

Truesdell, C., Noll, W., 1992. The Non-Linear Field Theories of Mechanics, second ed., Springer, New York, Sections 86, 95.

Vincent, P.I., 1960. Necking and cold-drawing of rigid plastics. Polymer 1, 7–19.

Ward, I.M., 1982. Mechanical Properties of Solid Polymers, 2nd ed. Wiley, New York.

Warner Jr, H.R., 1972. Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Ind. Eng. Chem.

Fundamentals 11, 379–387.

Whitney, W., Andrews, R.D., 1967. Yielding of glassy polymers: volume effects. J. Polym. Sci. C16.

Zapas, I.J., Crissman, J.M., 1974. An instability leading to failure of polyethylene in uniaxial creep. Polym. Eng. Sci. 19, 104–107.

5926 A.I. Leonov / International Journal of Solids and Structures 39 (2002) 5913–5926


	A theory of necking in semi-crystalline polymers
	Introduction
	Kinetics of unfolding crystalline blocks in simple elongation of SC polymers
	Modeling finite elasticity of SC polymers
	Elastic necking with non-monotonous dependence S(lambda)
	Forced elasticity and non-equilibrium effects in polymer necking
	Concluding remarks
	Acknowledgements
	References


